

Faculty of Health and Applied Sciences Department of Health Sciences

QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES/BACHELOR OF HUMAN NUTRITION			
QUALIFICATION CODE: 08BMLS/08BOHN	LEVEL: 5		
COURSE: BIOCHEMISTRY/INTRODUCTION TO BIOCHEMISTRY	COURSE CODE: BIO521S/IBC521S		
SESSION: NOVEMBER 2019	PAPER: THEORY		
DURATION: 3 HOURS	MARKS: 100		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER	DR YAPO GUILLAUME ABOUA	
MODERATOR:	PROF HABAUKA KWAAMBWA	

INSTRUCTIONS

- 1. Answer all questions.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam answer book.
- 4. No books, notes or other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

Non-programmable calculator is allowed.

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page)

SECTION A

Questi	on :	1: Multiple Choice	[20]
1.1	.1 Which of the following is/are characteristic of living organisms?		(1)
	a.	Organised structure and Responsiveness to stimuli	
	b.	Responsiveness to stimuli	
	c.	Organised structure + Responsiveness to stimuli + Maintenance of	
		homeostasis	
	d.	Maintenance of homeostasis	
1.2	Wh	ich one of the following is a conjugate acid-base pair?	(1)
	a.	NH ₂ ⁻ and NH ₄ ⁺	
	b.	NH ₃ and NH ₄ ⁺	
	c.	NaF and F ⁻	
	d.	H₃O+ and OH ⁻	
1.3	Am	monia (NH_3) acts as a weak base in aqueous solution. What is the	(1)
acid that reacts with this base when ammonia is dissolved in water?		d that reacts with this base when ammonia is dissolved in water?	
	a.	None, there are no acids in pure water	
	b.	H ₂ O	
	c.	Oxygen that is always dissolved in water	
	d.	$\mathrm{NH_4}^+$	
1.4 Wł	nich	of the following substances will dissolve in water to produce an acidic	(1)
	sol	ution?	
	a.	FeCl ₃	
	b.	NH ₃	
	c.	$NaC_2H_3O_2$	
	d.	$C_6H_{12}O_6$	
1.5	Wh	ich of the following sentences is not true with respect to proteins?	(1)
	a.	There are 20 amino acids in the protein we require everyday	
	b.	There is a limiting amino acid content in maximum quantity of protein	
	c.	Lysine is an essential amino acid.	
	d.	The requirement of essential amino acids per kg of protein is called	
		'reference pattern of amino acids'	

1.6	1.6 Which of the following is the name given to molecular chaperones?		
	a.	Denaturation protein	
	b.	Allosteric protein	
	c.	Ribonuclease	
	d.	Heat shock protein	
1.7	An	inorganic ion required for the activity of an enzyme is known as	(1)
	a.	Activator	
	b.	Coenzyme	
	c.	Cofactor	
	d.	Holoenzyme	
1.8	W	hat is an apoenzyme?	(1)
	a.	It is a non-protein group	
	b.	It is a complete, biologically active conjugated enzyme	
	c.	It is a protein portion of an enzyme	
	d.	It is a prosthetic group	
1.9	Cel	Is that lack a membrane-bound nucleus are cells.	(1)
	a.	Fungal	
	b.	Prokaryotic	
	C.	Eukaryotic	
	d.	Plant	
1	. 10	Compensatory response for respiratory alkalosis involves	(1)
	a.	Increase in bicarbonate levels	
	b.	Decrease in pCO ₂	
	c.	Decrease in bicarbonate levels	
	d.	Increase in pCO ₂	
1.11	Αı	peptide which acts as potent smooth muscle hypotensive agent is	(1)
	a.	Bradykinin	
	b.	Gramicidins	
	c.	Tryocidine	
	d.	Glutathione	

1.12	Er	nzymes accelerate the rate of reactions by	(1)
¥	a.	Increasing the equilibrium constant of reactions	
	b.	Decreasing the free energy change of the reaction	
	c.	Increasing the energy of activation	
	d.	Decreasing the energy of activation	
1.13	A	fatty acid which is not synthesized in the body and has to be supplied	(1)
	in	the diet is	
	a.	Linolenic acid	
	b.	Palmitic acid	
	c.	Lauric acid	
	d.	Palmitoleic acid	
1.14	Pro	ppionyl CoA is formed on oxidation of	(1)
	a.	Monounsaturated fatty acids	
	b.	Only unsaturated fatty acids	
	c.	Fatty acids with odd number of carbon atoms	
	d.	None of these	
1.15	Lip	ids are stored in the body mainly in the form of	(1)
	a.	Triglycerides	
	b.	Phospholipids	
	C.	Fatty acids	
	d.	Glycolipids	
1.16	Det	terioration of food (rancidity) is due to	(1)
	a.	Peroxidation of lipids	
	b.	Cholesterol	
	c.	Vitamin E	
	d.	Phenolic compounds	
1.17	Sor	bitol is a	(1)
	a.	Reducing sugar	
	b.	Sugar ester	
		Sugar alcohol	
	d.	Glycoside	

1.18	18 Each of the following vitamins is required for reactions in the oxidation	
	of pyruvate to CO ₂ and H ₂ O EXCEPT	
	a. Niacin	
	b. Thiamine	
	c. Biotin	
	d. Riboflavin	
1.19	Tetracycline, streptomycin and erythromycin are effective antibiotics	(1)
	because they inhibit:	
	a. RNA synthesis in prokaryotes	
	b. RNA synthesis in eukaryotes	
	c. Protein synthesis in prokaryotes	
	d. Protein synthesis on cytoplasmic ribosomes of eukaryotes	
1.20	In humans, the following statements about uric acid are true EXCEPT:	(1)
	a. It is the main product of purine metabolism	
	b. It is present in excessive amounts in gout	
	c. It is converted to urea in the liver	
	d. Xanthine dehydrogenase is one of the enzymes involved in its	
	formation	
SECT	ION B	[80]
Quest	ion 2: Fill the blank spaces only by writing down the number and the	[20]
	ct missing expression	
	6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
2.1	To form and proteins, amino acids are joined together	(1)
	by peptide bonds.	
2.2	Human chromosomes are composed of chromatin, which	(1)
	consist of DNA and proteins histones	
2.3	The actual order of the amino acids in the protein is called its	(1)
	and is determined by DNA.	

2.4	The respiratory system contributes to the balance of acids and bases in (2			
	The body by regulating the blood levels offormed by the			
	equilibrium reaction of CO ₂ water in in the blood.			
2.5	Obesity is accumulation of in the body.	(1)		
2.6	pKa is the negative logarithm of the constant for a weak			
	acid.			
2.7	Insulin decreases process in the liver.	(1)		
2.8	There are 20 different amino acids commonly found in	(1)		
2.9	Transcription process is catalysed by the enzyme	(1)		
2.10	Proteins can also be classified into families and super families, according	(1)		
	to their sequenceas well as their shapes and composition.			
2.11	Genetic information is contained in, which in eukaryotes is	(1)		
	located mainly in the nucleus			
2.12	Globular proteins (e.g., haemoglobin) are, spherical	(1)		
	molecules that are usually soluble in water.			
2.13	3 Biosynthesis of cellular nucleic acids is largely dependent on the			
	synthesis of nitrogenous bases, namely purines and			
	pyrimidines.			
2.14	Enzymes follow the basic physical and chemicalof proteins.	(1)		
2.15	Carbohydrates are defined as polyhydroxy derivatives of aldehydes or	(1)		
2.16	are polymers of the same monosaccharide units, e.g. starch,	(1)		
	glycogen, inulin, cellulose, dextrin, dextran.			
2.17	are stereoisomers that are mirror images of each other.	(1)		
2.18	In, the conversion of pyruvate to lactate is the essential step. (1			
2.19	The formation of ketone bodies is called and their utilisation (1			
	is called ketolysis.			
2.20	Sphingolipids are involved in intracellular communication and as	(1)		
	determinants of the ABO blood groups.			

Question 3: Short Answers	[40]
3.1 Name the four buffer systems in the body.	(4)
3.2 What is the difference between holoenzyme, apoenzyme and abzyme?	(3)
3.3 Name six functions of protein.	(6)
3.4 Name two polyunsaturated fatty acids (PUFAs).	(2)
3.5 Name three constituents of cephalin and three constituents for lecithin	(6)
	(2)
3.6 What are the roles of prostaglandins?	(2)
3.7 What is respiratory acidosis?	
3.8 Describe briefly the principle of each of the following tests:	(2)
a. Ninhydrin test	(2)
b. Xanthoproteic test	(2)
c. Sudan III dye	(2)
3.9 After you have defined the principle of the Barfoed's test, explain why the	(4)
Barfoed's test is said to be a quantitative determination test for sugars.	
3.10 After defining reducing sugar. Give an example of a reducing	(3)
monosaccharide and an example of a reducing disaccharide sugar.	
3.11 Name an activator and an inhibitor of the Gluconeogenesis pathway	(2)
Question 4: Calculation	[20]
4.1 Calculate the fluoride ion concentration and pH of a solution that is 0.20 M	(5)
in HF and 0.10 M in HCl. The equilibrium constant for the ionization of	
HF is 6.8×10^{-4} .	
4.2 What is the pH of the following solutions?	(2)
a. 0.35 M hydrochloric acid	(3)
b. 0.35 M acetic acid (pKa = 4.76)	, ,
4.3 A weak acid, HA, has a total concentration of 0.20 M and is ionized	
(dissociated) by 2%;	(3)
a. What is the Ka for this acid?	
h. Calculate the nH for this acidic solution	(2)

4.4 You have been given the kinetics data of the enzyme below.

Peptide	Velocity
concentration	(Mµmol/min)
M (10 ⁻⁴⁾	10-6
2.5	2.2
5	5.8
10	5.9
15	7.1
20	7.1
25	7.1

$$v = \underbrace{[S] Vmax}_{[S] + Km}$$

$$v[S] + vKm = \underbrace{[S]Vmax}_{vKm} = \underbrace{[S]Vmax}_{vKm} - v[S]$$

$$vKm = \underbrace{[S] (Vmax}_{v} - v)$$

$$Km = \underbrace{[S] (Vmax}_{v} - v)$$

END OF EXAM